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We present a new method for imposing and testing concavity of cost functions using asymptotic least
squares, which can be easily implemented even for nonlinear cost functions. We provide an illustration
for a (generalized) Box–Cox cost function with six inputs: capital, labor disaggregated in three skill
levels, energy, and intermediate materials. We present a parametric concavity test and compare price
elasticities when curvature conditions are imposed versus when they are not. Although concavity is
statistically rejected, estimates are not very sensitive to its imposition. We find stronger substitution
between the different type of labor than between any other two inputs.
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1. INTRODUCTION

Most empirical studies in production analysis are based on
functional forms that must satisfy some curvature conditions
to be compatible with microeconomic theory. The aim of this
article is to present and implement a new method for impos-
ing price concavity of a cost function and testing this prop-
erty. The main advantage of the framework is that it is easily
implemented, even for cost functions which are nonlinear in
parameters.
Contributions in the field of production analysis often check

whether concavity is fulfilled by the estimated parameters of
the cost function, but it is increasingly common to directly
impose concavity (locally or globally) on the parameters. This
can be achieved by restricting the eigenvalues of the Hessian
matrix with respect to prices as Gallant and Golub (1984)
do, or by relying on the Cholesky decomposition of the Hes-
sian as shown by Lau (1978) and realized by Diewert and
Wales (1987). A Bayesian method for imposing concavity
has been proposed by Terrell (1996) for three models that
are linear in parameters. This method’s extension to nonlin-
ear models, although theoretically unproblematic, is probably
cumbersome. More recently, Ryan and Wales (1998, 2000)
and Moschini (1999) discussed further techniques to impose
concavity.
Nonetheless, few contributions formally test whether con-

cavity is statistically rejected by the data. The work of Kodde
and Palm (1987) and Härdle, Hildenbrand, and Jerison (1991)
are notable exceptions in the context of demand analysis. Tests
of the concavity assumption appear interesting from a statisti-
cal stand point, and also from an economic perspective; pro-
duction units and goods considered in almost all empirical
investigations are aggregates for which microeconomic prop-
erties are not necessarily valid (see, e.g., Koebel 2002 on this
point). In this context, the a priori imposition of concavity
may lead to estimation bias.
Among the alternative ways of imposing the negative

semidefiniteness of a constant matrix �H , the one proposed

by Lau (1978), and its further developments by Diewert and
Wales (1987) and by Ryan and Wales (1998), are particularly
attractive, because they are easy to implement. Their approach
involves reparameterizing the matrix �H by H 0 = −U ′U and
estimating the parameters of the triangular matrix U instead
of �H . The resulting matrix H 0 automatically verifies negative
semidefiniteness. Several problems may arise when using this
procedure. First, by applying it in turn to 29 two-digit indus-
trial industries, Koebel (1998) found convergence problems
with the nonlinear SUR estimator for the parameters of H 0 for
more than half of the industries considered. These problems
are even more serious when the unrestricted specification is
already nonlinear in the parameters [such as, e.g., the Box–
Cox (BC) cost function]. Second, the procedure proposed by
Ryan and Wales cannot be used for demand systems for which
the parameters of the matrix �H cannot all be identified from
the reparameterization H 0 =−U ′U (see also Moschini 1999).
The method we outline in this article can be applied for a very
wide range of demand systems and is illustrated using a gen-
eralized BC specification that nests both the translog and the
normalized quadratic (or generalized McFadden) functional
forms.
The solution that we propose makes use of a minimum

distance or asymptotic least squares estimator, proposed by
Gouriéroux, Monfort, and Trognon (1985) and Kodde, Palm,
and Pfann (1990). Concavity is imposed in two stages. First,

we estimate the unrestricted parameters to obtain estimate �̂H ;
this typically will not be negative semidefinite. Second, the
difference between H 0 and �̂H is minimized (for an appropri-

ate metric) to obtain the concavity restricted estimates �̂H
0

. We
then present a parametric test for the concavity of the cost
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function in prices. The method that we rely on for imposing
concavity can be used simultaneously for testing this assump-

tion, by testing whether the matrix �̂H
0

− �̂H is statistically dif-
ferent from 0.
These results are applied to the analysis of the impact

of price, output growth, and technological change on labor
demand for different skill levels. Rather few studies have con-
sidered skill classes of labor as distinct inputs in the produc-
tion process. In general, labor is treated as a single aggregate
input, with two kinds of undesirable consequences. First, it
is only under restrictive conditions on the technology and on
the evolution of prices that the different labor and material
inputs can be combined into single aggregate measures. Con-
sidering aggregate labor may therefore lead to an estimation
bias. Second, disaggregated information is often of interest for
assessing the impact of policies to fight the high unemploy-
ment of unskilled workers (e.g., by means of wage subsidies).
This information cannot be recovered from models consider-
ing aggregate labor. In this article, we consider the wages of
different types of labor; the prices of energy, material, and
capital; the level of output; and the impact of time to explain
the evolution of different input demands.
Because concavity rejection may in fact be attributable to

inappropriate specification of the functional form, we retain
a generalized BC formulation that nests several usual mod-
els. Although the generalized BC is nonlinear in parameters,
concavity is imposed, and the parameters are estimated with-
out great difficulties. We test concavity for several specifi-
cations, and investigate whether certain functional forms are
more likely to fulfill concavity than others. Furthermore, we
compare elasticities when curvature conditions are imposed
and when they are not.
The factor demand system is estimated for 31 German man-

ufacturing industries for the period 1978–1990. The skill cat-
egories are based on the highest formal qualification received.
Workers without any formal vocational certificate are catego-
rized as low-skilled or unskilled; workers with a certificate
from the dual vocational training system who have attained
either a university-level entrance degree (Abitur) or a voca-
tional school degree are categorized as medium-skilled or
skilled; and workers with a university or technical university
degree are categorized as high-skilled workers.
The observed shift in demand away from unskilled labor is

widely documented in the economic literature. For Germany,
the situation can be visualized in Figure 1, which describes
the evolution of the share of each skill in aggregate labor,
with ht� st , and ut denoting high-skilled, skilled, and unskilled
workers, and aggregate labor defined as �t = ht+ st+ut . One
explanation for this shift is that technologic change is skilled
labor augmenting (Berman, Bound, and Griliches 1994) and
that higher skilled labor is more complementary to equip-
ment investment than lower skilled labor. Another reason for
the change in employment composition is that employment
changes in response to changes in wages and output vary for
different skill levels (e.g., Bergström and Panas 1992; Betts
1997). Both effects, as well as the impact of time and of price
changes, are simultaneously investigated here.
Sections 2 and 3 are devoted to the techniques used to

impose and to test concavity. The generalized BC specification
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Figure 1. Evolution of the Shares of Three Types of Qualification
(h = high skill, s = skill, u = unskilled) in Aggregate Manufacturing
Employment (l = labor) in West Germany; Basis 1978 = 1.00.

is presented in Section 4, and the results of some specifica-
tion tests appear in Section 5. The results of concavity tests
are examined in Section 6, and elasticities are discussed in
Section 7. Some conclusions are presented in Section 8.

2. PARAMETER ESTIMATION UNDER
CONCAVITY RESTRICTION

The technology constraint that a production unit faces is
given by f 
x� z��≤ 0, where x is a variable input vector, z is
a vector of characteristics (such as outputs and time trend), and
� ∈�⊂�S� is the vector of unknown technology parameters.
The cost function c gives the minimal value in x of the product
p′x that can be achieved for given prices p and the technology
constraint; that is,

c
p� z���=min
x
�p′x� f 
x� z���≤ 0�� (1)

where p ∈ �
Sp
++� x ∈ �Sx+ � z ∈ �

Sz
+ , and Sv denotes the dimen-

sion of a vector v. The Sx-vector of optimal input demands is
obtained by applying Shephard’s lemma to c,

x∗
p� z���= �c
p� z��

�p
≥ 0� (2)

This last inequality means that input price increases leads to
higher costs; that is, c is monotone (nondecreasing) in p.
As a consequence of the rational behavior of production

units, the microeconomic cost function is linearly homoge-
neous and concave in input prices. Concavity in prices means
that the 
Sp×Sp� Hessian matrix,

H ≡ �2c
p� z��

�p�p′ � (3)

of the cost function will be symmetric and negative semidefi-
nite. In addition, linear homogeneity in prices implies that

�2c
p� z��

�p�p′ p = 0� (4)

and hence only Sp
Sp− 1�/2 elements of H will be linearly
independent.
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For simplicity, linear homogeneity in prices and symmetry,
which are easily imposed, will not be tested in the sequel;
hence any matrix H and its estimates Ĥ are assumed to be
compatible with these properties. In general the matrix H
depends on p and z we denote �H the matrix obtained from H
for fixed levels of prices and characteristics: p = p̄ and z= z̄.
Let N denote the number of observations. The unrestricted

model can be written as X = X∗
��+ �, where X∗ is the

NSx×1� stacked vector of optimal demands x∗, X is the vec-
tor of observed inputs quantities, and � is the 
NSx×1� vector
of error terms. We assume that ��, the conditional variance
of �, is consistently estimated by �̂�. The unrestricted least
squares estimator �̂ is defined as

�̂= argmin
�

X−X∗
���′�̂−1

� 
X−X∗
���� (5)

The concavity-restricted least squares estimator is obtained as

�̂0 = argmin
�

{

X−X∗
���′�̂−1

�

× 
X−X∗
��� � v′ �Hv ≤ 0�∀v ∈ �Sp
}
� (6)

Because the matrix H in (3) in general depends not solely
on �, but also on price and output levels, concavity is only
imposed locally in (6) (at p= p̄ and z= z̄) and will not neces-
sarily be fulfilled at other observation points. Hence the nota-
tion �H in (6). The method that we propose could, however,
be easily adapted to impose concavity at more than one point
or globally. Several techniques for estimation under inequal-
ity constraints have recently been overviewed by Ruud (1997)
and Ryan and Wales (1998). In the sequel, we focus on a
method that is attractive because of its simplicity and that can
be applied to a wide range of functional specifications.
As already mentioned, symmetry and linear homogeneity

are easily imposed on the cost function, and Diewert and
Wales (1987) and Ryan and Wales (1998) showed that restrict-
ing the parameters � to fulfill negative semidefiniteness of
the matrix �H is not much more difficult. Indeed, for some
functional forms, the parameter vector � can be split into
� = 
�′

A��
′
B�

′, where �A is a vector with Sp
Sp − 1�/2 free
parameters, whose values can be chosen to ensure negative
semidefiniteness of �H for any value of the remaining parame-
ters �B. Note that for those functional forms that are flexible in
the sense given by Diewert and Wales (1987), the total num-
ber of parameters, S�, will always be greater than the number
Sp
Sp−1�/2 of parameters involved in �A, so that the decom-
position �= 
�′

A��
′
B�

′ is justified. For many usual functional
forms, the Hessian matrix of the cost function with respect
to p can be written at a given point as �H = �A+ �B, where
the matrix �A depend only on the concavity driving parame-
ters �A = vecli�A, and �B depends only on �B and not on �A.
The operator vecli introduced here stacks up a maximal subset
of linearly independent components of a matrix. It is a slight
adaptation of the operator vec, with the complication that it
is not uniquely defined. However, results will not depend on
the choice of the subset, provided that this choice is made
once and for all, so that the ambiguity of the definition is only
superficial. We can therefore write

H
p̄� z̄�A��B�= A
p̄� z̄�A�+B
p̄� z̄�B� (7)

or, more succinctly, �H = �A+�B. Negative semidefiniteness of
�H can then be obtained, for any given matrix �B, by choos-
ing the free parameters �A such that �A is sufficiently neg-
ative semidefinite. For this purpose, Ryan and Wales (1998)
proposed reparameterizing the matrix �A as �A ≡ −U ′U − �B,
where the matrix U
Sp×Sp� is lower triangular, and estimat-
ing the parameters of U and �B instead of �A and �B. Nega-
tive semidefiniteness of �H is then achieved by construction.
Because �A = −U ′U − �B, the parameters �A of �A can be
directly determined when the parameters of U and �B are iden-
tified.
Let H 0 = −U ′U denote the restricted Hessian matrix and

let  0H
u� = vecliH 0 be the vector comprising the S H ≡
Sp
Sp− 1�/2 free parameters of H 0. The components of  0H
are functions of the elements uij of U ; hence the notation
 0H
u� with u = vecliU . Instead of estimating the parameters
�= 
�′

A��
′
B�

′ of the cost function, Ryan and Wales estimated

u′��′

B�
′ by solving a nonlinear least squares problem of the

type

min
u��B


X−X∗
u��B��
′�̂−1

� 
X−X∗
u��B��� (8)

Identification of the parameter vector � = 
�′
A��

′
B�, which is

of interest for the computation of elasticities, may then be
obtained from (7).
This approach presents three main drawbacks. First, obtain-

ing convergence may be difficult. By implementing (8) in turn
for 29 industrial sectors, Koebel (1998) encountered conver-
gence problems for more than half of them. These difficulties
are even more severe when the unrestricted functional form
x∗
p� z�� is already nonlinear in the parameters. Second, the
decomposition of �H as in (7) is not possible for every func-
tional form, and identification of the restricted parameters �A
in terms of  0H and �B is not always straightforward (see Ryan
and Wales 1998; Moschini 1999 on this last point). Third, tests
for the concavity assumption are not provided.
Instead of relying on (8), we could estimate the concavity-

restricted parameters via the asymptotically equivalent mini-
mum distance estimator obtained as the solution of

�̃0=argmin
�

{

�̂−��′�̂−1

� 
�̂−��� v′ �Hv≤0�∀v∈�Sp
}
� (9)

where �̂ denotes the unrestricted estimate of � and �̂� is a
consistent estimate of the variance matrix of �̂. In (9), the
parameters � are chosen such that the distance between the
unrestricted and concavity-restricted parameters is minimized.
The asymptotic equivalence between the solutions of (6) and
(9) has been discussed by Gouriéroux and Monfort (1989,
chap. XXI).
In general, the inequality constraint v′ �Hv≤ 0 in ( 9) cannot

be explicitly imposed on the parameters �; the cases consid-
ered by Diewert and Wales (1987) and Ryan and Wales (1998)
are exceptions rather than the rule. We therefore estimate the
concavity-restricted parameters in two stages, a procedure jus-
tified in Proposition 1. In the first stage, the parameters  ̂0H of

the concavity-restricted Hessian matrix �̂H
0

are determined as
the solution of

min
u

 ̂H − 0H
u��

′�̂−1
H 
 ̂H − 0H
u��≡ d� (10)
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where  ̂H =vecli �̂H and  0H
u�=vecli
−U ′U�. Let g � �S� →
�S H be such that g
��≡vecli% 2

ppc
p̄� z̄��; then a consistent
estimate of the variance of  ̂H is given by

�̂H ≡ �g

��′ 
�̂��̂�

�g′

��

�̂�� (11)

Gouriéroux and Monfort (1989) and Wolak (1989) showed
that the minimum achieved in (9) is asymptotically equivalent
to the Wald statistic d in (10).
From (10), we obtain  ̂0H , but in most cases these esti-

mates (in number S H ) do not enable identification of the S�
concavity-restricted parameters �̂0 of the cost function. There-
fore, a second stage is needed to identify the parameters of
interest �̂0. Identification can be achieved by adapting the
asymptotic least squares framework proposed by Gouriéroux
et al. (1985). The assertions and propositions that follow
are proven in Appendix A. The relationship between the
S H restricted parameters  ̂0H and the S� structural parame-
ters �̂0 can be written as

�̂0 = argmin
�

{

�̂−��′�̂−1

� 
�̂−���  ̂0H = g
��
}
� (12)

and the solution to this problem is asymptotically equivalent
to

�̂0 = �̂+ �̂�

�g′

��

�̂�

(
�g

��′ 
�̂��̂�

�g′

��

�̂�

)−1

 ̂0H −g
�̂���

(13)

From this expression, it can be seen that the concavity-
restricted parameters �̂0 are equal to the unrestricted esti-
mates �̂ corrected by a function of the difference  ̂0H − g
�̂�
between the parameters of the concavity-restricted and unre-
stricted Hessians. The relationships between these estimators
and their properties are described in Proposition 1.

Proposition 1. Under the assumption that each of the
problems (9), (10), and (12) has a unique solution, the follow-
ing properties are verified under the null of concavity:

a. The solution �̃0 of (9) and the solution �̂0 of (12) are
asymptotically equivalent.

b. The solution  ̂0H of (10) is asymptotically equivalent to
g
�̃0� and to g
�̂0�.

c. The minimum distances achieved in problem (9), (10),
and (12) are asymptotically equivalent.

d. An asymptotic solution of (12) is given by (13).

Part a of Proposition 1 justifies our two-step procedure for
solving (9). Part b allows us to retain the statistic  ̂0H obtained
by solving (10) as an estimator for g
�0�. Part c provides a
rationale for computing the Wald-type test for the null of con-
cavity using the minimum value achieved in (10). Part d jus-
tifies using (13) for determination of the concavity-restricted
parameters.
Concerning the asymptotic distribution of the estimators  ̂0H

and �̂0 under H0, we must distinguish the case where the true
values saturate some or all constraints. If they do not, then
these asymptotic distributions are N
����� and N
 H��H�.
If some constraints are saturated by the true value, however,
then the distributions of  ̂0H and �̂

0 become quite complex (see

Gouriéroux, Holly, and Monfort 1982; Kodde and Palm 1986;
Wolak 1989).
A special case of this minimum distance estimator of �̂0

was used by Koebel (1998) for estimation of the concavity-
restricted parameters of a normalized quadratic cost function.
For this functional form, the matrix B
p̄� z̄�B� vanishes in the
expression (7), and the concavity-restricted parameters �0A can
be estimated and identified in one stage. The main advantage
of using (10) and (13) rather than (8) is that convergence is
obtained much more easily. As is shown in the next section,
(10) is also useful for testing the validity of the concavity
restrictions.
Note that the monotonicity property (2) can be imposed

locally using a similar technique. For instance, let us define
&̂ ≡ x∗
p̄� z̄ �̂� and &0
v� ≡ 
v21� ' ' ' � v

2
Sx
�′, where the vj are

parameters to be estimated. Then it is possible in a first stage
to minimize the distance between &̂ and &0
v� with respect
to v to obtain the monotonocity-restricted estimates &̂0. The
monotonicity-restricted parameters can then be obtained in a
second stage in a similar setup as the one presented earlier. It
is of course also possible to impose monotonicity and concav-
ity simultaneously along the same lines.

3. TESTING CONCAVITY

Tests of the definiteness of a matrix have been presented
in the context of demand analysis. For example, Härdle and
Hart (1992) and Härdle et al. (1991) tested whether the high-

est nonzero eigenvalue of �̂H is significantly negative. Kodde
and Palm (1987) preferred to consider all eigenvalues simul-
taneously and propose a distance test based on

dKP ≡min
*≤0


*̂−*�′+̂−
*̂−*�� (14)

where *̂ denotes the vector of all eigenvalues of the estimated
matrix �̂H and +̂ is a consistent estimate of the variance matrix
of * given by

+̂= �*

� vec′ �H
( �̂H )

�̂H

�*′

� vec�H
( �̂H )

�

where �̂H is the variance matrix of vec �̂H . Note that �̂H is

different from �̂H , which is the variance matrix of vecli �̂H .
Whereas the latter has full rank, the former is singular. A
generalized inverse of +̂ must be considered in (14), because
�H is symmetric and singular, but dKP is independent of the
choice of generalized inverse. The following proposition gives
an asymptotically equivalent expression of the test statistic
dKP proposed by Kodde and Palm (1987).

Proposition 2. Under the assumption that the eigenvalues
* are differentiable with respect to  H ,

dKP ≥ d�

dKP
a= d�

Briefly, Proposition 2 states that in small samples dKP ≥ d,
but that both statistics are asymptotically equivalent. The dis-
tance dKP between restricted and unrestricted eigenvalues is
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asymptotically equivalent to the distance d between the ele-
ments of the estimated matrix �̂H and the negative semidefi-

nite matrix �̂H
0

. The distance d may, however, be more useful
than dKP for three reasons. First, computation of d is some-
what simpler, because we do not have to calculate the matrix
of derivatives of the eigenvalues with respect to the param-
eters �*/�vec′ �H . Second, the statistic d can be computed
even when the eigenvalues are multiple and not differentiable.
Third, in the case where � can be split into 
 ′

H��
′
B�

′, we can
directly obtain the restricted parameters �̂0A by solving (10);
this is not the case when using (14).
Does the assumption that the eigenvalues are differentiable

strongly restrict the applicability of Proposition 2? The fol-
lowing result shows that the set of matrices that have multiple
eigenvalues is of measure 0, and therefore the assumption that
the eigenvalues are differentiable does not much restrict the
applicability of Proposition 2.

Proposition 3. a. The eigenvalue *1 is differentiable with
respect to  H if and only if *1 is simple.
b. The set of all matrices �H that have multiple eigenvalues is

of Lebesgue measure 0.

Proposition 3 means that almost all matrices have differen-
tiable eigenvalues. Hence the technical problem related to the
nondifferentiability of some eigenvalues that may arise when
Proposition 2 is applied occurs for only a small set of matrices
with measure 0.
Gouriéroux et al. (1982), Kodde and Palm (1986), and

Wolak (1989) have shown that under the null hypothesis, the
statistic d will asymptotically follow a mixture of chi-square
distributions,

Pr-d ≥ d.
a=
Sp−1∑
j=0

Pr-/2
j�≥ d.w 
Sp−1� Sp−1− j��H��

where the weight wj denotes the probability that j of the Sp−1
eigenvalues of �H are negative. Because computation of the
weights in the expression of d is not straightforward, the lower
and upper bounds to the critical value computed by Kodde
and Palm (1986) will be used for hypothesis tests.

4. A GENERALIZED BOX–COX COST FUNCTION

To avoid imposing a priori restrictions on an unknown tech-
nological structure, researchers have relied on flexible func-
tional forms that can be interpreted as (local) second-order
approximations to an arbitrary cost function. Translog (TL),
generalized Leontief (GL), and normalized quadratic (NQ)
cost functions have often been used for estimating price elas-
ticities. We consider a generalized BC cost function that nests
the former usual specifications. In contrast to the BC formula-
tions of Berndt and Khaled (1979) and Lansink and Thijssen
(1998), our specification nests both the NQ and the TL cost
functions.
We apply the BC transformation to the explanatory vari-

ables pit and zit; for 11 �= 0, let

Zjit =
z
11
jit−1
11

� j = 1� ' ' ' � Sz�

and

Pjit =

pjit/p

′
it3i�

11 −1
11

� j = 1� ' ' ' � Sp�

For 11 = 0, let Zjit = ln zjit and Pjit = ln
pjit/p
′
it3i�. The term

p′
it3i appearing in the expression of Pjit is introduced to guar-
antee that the cost function is linearly homogeneous in prices.
The vector 3i of size Sp × 1 is chosen to be equal to x̄i/c̄i,
where x̄i and c̄i denote some average inputs and costs defined
later. The choice of a kind of Laspeyres cost index p′

it3i for
normalization is appealing because it is independent of the
units of measurement of prices and of quantities (i.e., satis-
fies the index theoretical dimensionality and commensurability
axioms).
The specification of the cost function is

c∗
pit� zit�i�= p′
it x̄i
12C

∗
pit� zit5i� 11�+1�1/12� (15)

for 12 �= 0 and c∗ = p′
it x̄i exp
C

∗� for 12 = 0, where

C∗ =C
Pit�Zit5i�

= 50i+
P ′
it�Z

′
it�B1i+

1
2

P ′

it�Z
′
it�B2

(
Pit
Zit

)
= 50i+
P ′

it�Z
′
it�

(
Bpi
Bz

)
+ 1
2

P ′

it�Z
′
it�

(
Bpp Bpz
Bzp Bzz

)(
Pit
Zit

)
� (16)

In c∗, the technology parameters to be estimated are gath-
ered in the vector �i = 
5′

i� 11� 12�
′. The matrices B1i and B2

contain the parameters of 5i and are of size 
Sp + Sz�× 1,
and 
Sp+Sz�× 
Sp+Sz�. It can be directly seen that the cost
function c∗ is linearly homogeneous in prices. The term p′

it x̄i
appearing in the expression of c∗ ensures both price homo-
geneity of degree one of the cost function and scale invari-
ance of the estimated parameters’ t values. The sensitivity of
the t values with respect to an arbitrary scaling of the depen-
dent variable is a problem often arising with nonlinear models.
(See Wooldridge 1992 for a discussion in the context of BC
regression models.) To understand why scale invariance holds
here, consider the regression cit = c∗ + 6cit , where c denotes
observed costs, c∗ is defined in (15), and 6cit is the realization
of a random variable. Changing the scaling of cit = p′

itxit will
similarly change the scaling of the multiplicative term p′

it x̄i in
the expression c∗ and leave all parameter estimates unaffected.
A (locally) flexible function must be able to approxi-

mate the level, the Sp + Sz first-order derivatives, and the

Sp+Sz�

2 second-order derivatives of an arbitrary function at
a given point. This corresponds with the number of param-
eters entailed by the specification (16), which thereby satis-
fies a necessary requirement for being flexible. Yet without
further restrictions on the parameters 5i, the function C

∗ is
not parsimoniously parameterized. Symmetry in 
pit� zit� and
homogeneity of degree 0 in pit imply 
Sp+Sz�
Sp+Sz−1�/2
and 1+ Sp + Sz additional restrictions on C

∗. Hence, for C∗

to be a flexible function, it is only necessary that it entails
at least 
Sp+Sz�
Sp+Sz+1�/2 free parameters. These addi-
tional restrictions are imposed on the parameters 5i as

Bpp = B′
pp� Bzz = B′

zz� Bpz = B′
zp�

7′SpBpi = 1� 7′SpBpp = 0� 7′SpBpz = 0� (17)

where 7Sp denotes a 
Sp×1�-vector of 1s.
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From (15), (16), and (17), it can be seen that several known
functional forms are obtained for particular values of the
parameters 
11� 12�. A complete justification of the following
assertions can be found in Appendix B. For 11 = 12 = 1, the
NQ cost function is obtained. The GL corresponds to 11= 1/2
and 12 = 1. The generalized square root (GSR) is obtained for
11 = 1 and 12 = 2. When 11 → 12 → 0, the TL is the limiting
case. A log-linear (resp. lin-log) specification is obtained as
11 = 1 and 12 → 0 (11 → 0 and 12 = 1). It is easy to see that
the foregoing BC specification is a flexible functional form;
because (15) entails several flexible functional forms as spe-
cial cases, the BC cost function itself is flexible.
The system of input demands x∗
pit� zit�i� is obtained

through Shephard’s lemma. Note that the dependence of the
Laspeyres index on current prices must be taken into account
in the derivation to obtain

x∗it = x̄ic
∗
it/
p

′
it x̄i�+p′

it x̄i
c
∗
it/
p

′
it x̄i��


1−12� �P
′
it

�pit

�Cit

�Pit
� (18)

where
�Cit

�Pit
= Bpi+BppPit+BpzZit

and
�Pit
�p′

it

= p̂11−1


p′
it3i�

11

(
ISp −

1
p′
it3i

pit3
′
i

)
�

By convention, p̂ ≡ diag
pit� is a diagonal matrix with ele-
ments pijt on the main diagonal. We verify that

�Pit
�p′

it

pit = 0�

as a consequence of Pit being homogeneous of degree 0 in
pit . Hence, for the specification (18), the adding-up condition
p′
itx

∗ = c∗ is automatically satisfied.
The Hessian of the cost function with respect to prices is

given by

�2c∗

�pit�p
′
it

= x̄i
c
∗
it/p

′
it x̄i�


1−12� �Cit

�P ′
it

�Pit
�p′

it

+ 
c∗it/p
′
it x̄i�


1−12� �P
′
it

�pit

�Cit

�Pit
x̄′i

+p′
it x̄i
1−12�
c

∗
it/p

′
it x̄i�


1−212�

×
(
�P ′

it

�pit

�Cit

�Pit

)(
�Cit

�P ′
it

�Pit
�p′

it

)
+ p′

it x̄i
c
∗
it/p

′
it3i�


1−12�

×
[
�P ′

it

�pit
Bpp

�Pit
�p′

it

+
(
�Cit

�P ′
it

�2Pit
�pjt�pht

)]
� (19)

Evaluating this matrix at 
p̄it� z̄it�, we see that it does not admit
an additively separable representation such as (7). For this rea-
son, it is more convenient to apply the method presented in
Section 2 for determination of the concavity-constrained esti-
mates. Evaluating (19) at the unrestricted parameter values �̂i
yields  ̂H , which can in turn be replaced in problem (10) to
derive the minimum distance estimates  ̂0H for the parame-
ters of the restricted Hessian matrix % 2

ppc
(
p̄� z̄ �̂0

)
. Knowing

the value of  ̂0H , the restricted parameters �̂
0 of interest for

the computation of the different elasticities can be computed
using (13).

5. EMPIRICAL IMPLEMENTATION

We first briefly describe the dataset that we use, then present
some preliminary results aimed to precise the sample split and
the specification on which we rely for testing concavity.

5.1 Data Description

Given the available data, we define the vector of inputs
as xit = 
kit� hit� sit� uit� eit�mit�

′ and the prices as pit =

pkit� phit� psit� puit� peit� pmit�

′, where the labor input hit
denotes high-skill labor, sit denotes skilled labor, and uit
denotes low-skilled or unskilled labor. Labor is measured in
total workers (full-time equivalent). In addition, eit denotes
energy; mit , material, and kit , capital. The subscripts t and i
denote time and industry. Other explanatory variables enter-
ing the cost function are the level of production, yit , and
a time trend, t. These variables are regrouped in a vector
zit = 
yit� t�

′. The BC transformation is not applied to t hence
Zit = 

y

11
it − 1�/11� t� in (16). Total costs of production are

defined by cit = p′
itxit .

The data used consist of a panel of 31 out of 32 German
two-digit manufacturing industries observed over the period
1978–1990. One industry (petroleum processing, no. 15) has
been dropped from our sample because of the importance of
taxes included in the output and the unreliability of the data
available on the different skills. The choice of the period is
related to the fact that energy expenditures and quantities,
which are based on input-output tables, are available only from
1978 onward. Because of data-related difficulties appearing
with the German reunification, we prefer not to use post reuni-
fication data. Most of our data are drawn from the German
National Accounts.
We disaggregate the total number of employees and total

labor cost into three categories by using detailed information
on earnings and qualifications. Information on employment by
education is taken from the Employment Register of the Fed-
eral Labor Office (Bundesanstalt für Arbeit). It contains yearly
information on employment by skill category and by indus-
try as of June 30, for all employees paying Social Security
contributions. Labor is split into three groups: group 1 (high-
skilled) is defined as workers with a university or polytech-
nical degree, group 2 (skilled) comprises those having com-
pleted vocational training as well as technicians and foremen,
and group 3 (unskilled) comprises workers without formal
qualifications. From this dataset, we calculate the shares of
the three skill groups in employment and multiply these by
total employment, available for each industry from the national
accounts, to obtain hit , sit , and uit .
Information on earnings is taken from the IABS dataset for

skilled and unskilled labor and from the Federal Statistical
Office (Löhne und Gehälter Statistik) for high-skilled labor.
The IABS dataset is a 1% random sample of all persons cov-
ered by the Social Security system. Depending on the year,
it includes between 66,995 and 74,708 individuals working in
manufacturing industries. The earnings for high-skilled work-
ers are unfortunately top-coded in the IABS . More informa-
tion on the data is provided in the discussion paper version
(Koebel, Falk, and Laisney 2000).
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To reduce heteroscedasticity, input demands are divided by
the output level,

xit/yit = x∗
pit� yit� t�i�/yit+6it� (20)

For the 1978–1990 period, the factor demand equations for
capital, energy, material, and the three types of labor are esti-
mated with the iterative nonlinear SUR estimator, assuming
that vector 6it has 0 mean and a constant variance matrix �6

and that it is uncorrelated with the regressors. (Note that the
matrix �6 is not singular, as would be the case with a sys-
tem of shares.) We thus obtain maximum likelihood estimates
under the assumption 6 ∼ N
0��6�.
In defining the parameters x̄i and 3i, we try to avoid any

correlation with the error term 6it . The following choice seems
to be convenient for that purpose:

3i =
x̄i
c̄i

=
1

N−1
∑

n�=i xn�1
1

N−1
∑

n�=i cn�1
�

In this definition, industry i has been excluded in the sum-
mations to ensure that 3i and x̄i are uncorrelated with 6it (as
6it and 6jt are uncorrelated for i �= j). Thus p′

it3i corresponds
effectively to a kind of Laspeyres price index for total costs,
with the basis year chosen to be t = 1. The empirical results
are robust to the exclusion of the basis year in the regression.

5.2 Preliminary Results

First, the parameters �i have been estimated by assuming
that relation (20) is valid for all industries in our sample. For
Sp = 6, (18) entails 218 free parameters (among which 186
industry dummies), which have to be estimated on the basis
of 31× 13× 6 = 2�418 observations. To account for sectoral
differences, the BC specification (16) includes some industry-
specific coefficient 50i and Bpi, but in fact the remaining coef-
ficients might also differ across industries. Given the relatively
short time dimension, the parameters of the BC model can-
not be estimated for each industry separately. Therefore, we
investigate parameter heterogeneity by estimating model (20)
for different subgroups of industries. These groups are formed
on the basis of similarities (a) in their production, (b) in their
size, (c) in their skill structure of labor, and on whether they
are (d) labor- or (e) capital-intensive. Within each group, it
is assumed that technologies differ only through 50i and Bpi.

Table 1. BC Estimates for Different Sample Splits

Split (a) Consumer goods Investment goods Intermediate goods LR test�1�
log-L 3,900 2,537 2,656 2034
Split (b) Small industries Medium industries Large industries LR test�1�
log-L 2,799 2,912 2,941 1149
Split (c) Low skill intensive Skill intensive Highly skill intensive LR test�1�
log-L 3,338 2,951 2,651 1727
Split (d) Not labor intensive Labor intensive Highly labor intensive LR test�1�
log-L 3,168 2,740 2,830 1320
Split (e) Not capital intensive Capital intensive Highly capital intensive LR test�1�
log-L 3,056 2,868 2,882 1459

NOTE: See Tables C-1 and C-2 in Appendix C for the composition of the different subsamples.
(1) The likelihood ratio test is calculated as 2

(∑3
j=1 log�j − 8	077
18

)
, where 8,077.18 is the log-likelihood obtained on the pooled

sample and log�j denotes the log-likelihood obtained for the jth group of the corresponding sample split. Under the null, this test
statistic is asymptotically �2�106�; there are 3×32−32= 64 slope parameters and 3×21−21= 42 independent terms in the covariance
matrix. The 5% critical value is 131.

Across groups, technologies can differ in any of the parame-
ters �i.
The first sample split distinguishes three groups of indus-

tries according to the main type of production: those mainly
producing (i) intermediate inputs, (ii) investment goods, and
(iii) consumption goods. This classification is retained by the
German Federal Statistical Office for the calculation of aggre-
gate values for one-digit industries. In the second sample split,
we classify the industries in three groups according to their
level of production (at 1984 values). The last three sample
splits correspond to the size of some cost shares. In each case,
we split the 32 industries into 3 groups, each comprising 10
or 11 industries, according to whether they are located in the
lower, middle, or upper third of the distribution of a relevant
variable, which is yit , phithit/cit , 
phithit+psitsit+puituit�/cit ,
and pkitkit/cit for the sample split based on output level, skill,
labor, and capital intensity. For the groups with 10 (resp. 11)
industries, there are 92 (98) parameters [among which 60 (66)
are industry dummies], which have to be determined using
10× 13× 6 = 780 (858) observations. Table 1 summarizes
results of likelihood ratio tests for the null of identical BC
technologies across industries. In all cases, the pooled model
is rejected. Sample splits (a) and (c) yield the highest log-
likelihood values.
Even if statistical tests reject the equality of some parame-

ters, there exist arguments in favor of pooling the data. Balt-
agi (1995, chap. 4) recommended using a mean squared error
(MSE) criterion for assessing the poolability of the data, rather
than tests on the equality of parameters. In modeling cigarette
demand, Baltagi, Griffin, and Xiong (2000) found that pooled
data may provide more reliable forecasts, because the “effi-
ciency gains from pooling appear to more than offset the
biases due to -' ' ' . heterogeneities” (p. 125). Because a long
time period is necessary for such comparisons, we cannot pur-
sue these lines. Instead, we focus on the pooled model and on
the two disaggregate models with the highest likelihood. Our
choice is justified by the fact that a comparison of pooled ver-
sus disaggregate estimates may be interesting with regard to
the tests for functional form and for concavity.

5.3 Tests of Nested Specifications

Several usual specifications of input demands are nested
within the BC model and thus can be easily tested against it.
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Table 2. Log-Likelihood Values of Alternative Specifications

Specification Sample �1 (t value) �2 (t value) Log-likelihood

Box–Cox Pooled .345 (15.1) .195 (12.6) 8,077
Split (a) (i) .739 (23.1) .411 (22.2)

(ii) .070 (1.6) .087 (6.5) 9,094
(iii) .558 (13.1) .109 (3.8)

Split (c) (i) .517 (13.5) .270 (9.2)
(ii) .730 (17.4) .206 (8.7) 8,941
(iii) .856 (32.9) .694 (25.6)

Normalized Pooled 7,683
quadratic Split (a) 1 1 8,776

Split (c) 8,675
Generalized Pooled 7,516
Leontief Split (a) 1/2 1 8,535

Split (c) 8,520
Generalized Pooled 7,055
square root Split (a) 1 2 8,124

Split (c) 8,029
Translog Pooled 7,982

Split (a) → 0 → 0 8,876
Split (c) 8,738

Lin-log Pooled 7,166
Split (a) 1 → 0 8,082
Split (c) 8,171

Log-lin Pooled 7,582
Split (a) → 0 1 8,666
Split (c) 8,534

Table 2 provides the estimates obtained for 1̂1 and 1̂2, their
t statistics, and the log-likelihood values obtained for the
pooled and two disaggregate models. The upper part of Table 2
gives the results for the BC specification. Although they differ
between subsamples, in all cases 1̂1 and 1̂2 are between 0 and
1 and are statistically different from 0 and 1. This suggests
that the estimated BC departs in significant ways from com-
mon functional forms. Only in subsample (a, ii) the assump-

Table 3. Tests of Price Concavity of the Cost Function

Unrestricted estimates Restricted estimates

Highest No. of positive % of Concavity % of concavity
Specification Sample eigenvalue eigenvalues failures test d̂ Reject Accept

Box–Cox Pooled 1
9 �4
8� 1.9 (.6) 100
0 68
4 �56
9� 77
9 10
9
(i) 
6 �1
3� 1.2 (.7) 92
3 27
5 �21
2� 76
9 12
4

Split (a) (ii) 3
8 �4
2� 2.1 (.5) 100
0 18
1 �8
8� 82
1 0
(iii) 1
9 �3
0� 2.2 (.4) 100
0 15
2 �11
0� 58
1 9
4
(i) 2
6 �5
9� 1.4 (.7) 100
0 25
2 �32
9� 51
7 16
1

Split (c) (ii) 
8 �
9� 1.1 (.3) 100
0 27
0 �16
6� 67
7 3
1
(iii) 1
0 �1
0� 2.3 (.7) 100
0 13
3 �10
7� 41
5 2
3

Normalized Pooled 1
3 �
2� 2.0 (.0) 100
0 23
0 �0� 100
0 0
quadratic (i) 2
5 �
3� 2.0 (.0) 100
0 5
0 �0� 0 0

Split (a) (ii) 3
4 �
5� 1.0 (.0) 100
0 31
5 �0� 100
0 0
(iii) 6
2 �
9� 3.0 (.0) 100
0 17
6 �0� 100
0 0
(i) 6
9 �1
0� 2.0 (.0) 100
0 42
1 �0� 100
0 0

Split (c) (ii) 2
8 �
4� 3.0 (.0) 100
0 18
4 �0� 100
0 0
(iii) 
9 �
1� 2.0 (.0) 100
0 9
4 �0� 0 0

Translog Pooled 5
4 �15
2� 2.0 (.8) 97
3 102
1 �82
3� 80
4 8
7
(i) 13
8 �38
5� 2.1 (.9) 89
9 91
4 �75
4� 84
6 15
4

Split (a) (ii) 5
3 �5
8� 2.0 (.3) 100
0 17
6 �6
9� 87
2 0
(iii) 1
9 �3
4� 1.8 (.7) 100
0 37
7 �37
1� 64
1 17
1
(i) 4
9 �13
6� 1.4 (.8) 92
3 40
3 �50
4� 65
0 23
8

Split (c) (ii) 2
2 �3
0� 1.5 (.5) 100
0 66
7 �59
2� 64
6 3
8
(iii) 1
4 �1
7� 1.9 (.8) 94
6 70
0 �45
6� 76
9 16
9

NOTE: In columns 3, 4, and 6, we report the mean of the corresponding variable over all observations of the (sub)sample. The sample standard deviation is given in parentheses. The lower
and upper critical values for the null hypothesis of concavity are taken from Kodde and Palm (1986). The critical values at the 5% threshold are given by d� = 2
706 and du = 10
371. For the
NQ, the concavity test should take the same value at every observation. Thus the zero standard deviations reported in columns 4 and 6 are not surprising.

tion 11 = 12 cannot be rejected; this corresponds to a BC form
similar to the one proposed by Berndt and Khaled (1979).
The log-likelihood values for alternative functional forms

nested within the BC are reported in Table 2. Among these, the
TL achieves the highest likelihood, followed by the NQ. How-
ever, likelihood ratio tests reject the null hypothesis that the
alternative functional form describes the technology as well as
the BC for all specifications and samples considered.
Because all alternative specifications are rejected, only the

BC should be retained in the sequel. For comparing alterna-
tive functional forms, both in terms of their elasticities and in
their ability to satisfy concavity, we continue to consider the
NQ and the TL. This permits us to assess whether concavity
violation is due to the choice of a particular functional form
or is rejected for the bulk of the specifications.

6. CONCAVITY TESTS

In this section we first present further estimates based on
the concavity-unrestricted model discussed earlier. Then, using
the method outlined in Section 2, we determine the concavity
restricted parameters �̂0 and the test statistic d̂ for the null of
concavity. The results are presented in Table 3. Columns 3–5
refer to the concavity-unrestricted estimates. We evaluate the
unrestricted Hessian % 2

ppc
pit� zit�i�, which is different at
each observation point, and calculate the mean (over i and t)
of the highest eigenvalue as well as the mean number of pos-
itive eigenvalues. The corresponding sample standard devia-
tion is reported in parentheses. The percentage of observations
violating concavity appears in column 5.
The main conclusion that can be drawn from these unre-

stricted estimates is that they do not often satisfy concav-
ity. For the NQ, concavity is even globally violated for all
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samples. It is violated in all observations for the BC, except
in subsample (a, i), and for the TL except for these three sub-
samples and for the pooled sample. Thus, although the BC is
more flexible than the TL, it cannot be said to satisfy con-
cavity more easily. No clear pattern emerges for the number
of positive eigenvalues, but the largest eigenvalues are almost
uniformly lower for the BC than for the TL.
The second part of Table 3 (columns 6–8) reports some

results on the statistical significance of concavity violations.
Because concavity is imposed locally at, say, i= i0 and t = t0,
the result of our test depends on the arbitrary choice of the ref-
erence point 
i0� t0�. Thus we compute the test statistic taking
in turn each observation as the reference point. The average
level of d̂ over all reference points of the group and its sam-
ple standard deviation are given in columns 6 and 7. The null
hypothesis of concavity is rejected when the test statistic d̂ is
found to be significantly different from 0. The percentage of
cases for which d̂ was found to be significant (nonsignificant)
is reported in columns 7 and 8. Because we use the upper and
lower bounds proposed by Kodde and Palm (1986) for test-
ing the inequality restrictions, these percentages do not sum
to 100, and it is not possible to reach a conclusion for every
value of d̂.
The test points out that concavity violation is significant

on average. For 19 of 21 models, the number of conclusive
rejections exceeds that of conclusive failures to reject. In three
cases—the BC on subsample (c, iii) and the NQ on subsam-
ples (a, i) and (c, iii)—many test statistics fall in the incon-
clusive area (i.e., d� < d̂ < du). We refrained from completing
Table 3 with the results of monotonicity tests, because mono-
tonicity failures do not appear to be a problem with our data
and specifications, as documented in Section 7.1.
What can be learned from this inference? First, no rela-

tionship between the frequency of concavity rejection and the
number of degrees of freedom entailed in the model appears
to exist; concavity is rejected (or not) independently of the
sample split or functional forms considered. Second, whereas
the tests of local concavity provide only weak evidence for a
rejection, global concavity would be unambiguously rejected.
This is in line with the findings of Terrell (1996).

7. RESTRICTED AND UNRESTRICTED
ELASTICITIES

To better understand the consequences of imposing concav-
ity, we now compare restricted and unrestricted estimates of

Table 4. Own-Price Elasticities, Pooled Data

Box–Cox Normalized quadratic Translog

Unrestricted Unrestricted Unrestricted
Restricted Restricted Restricted
median median medianMedian s.e. Median s.e. Median s.e.

�kpk −
163 
054 −
378 −
070 
018 −
082 −
083 
064 −
367
�hph −1
301 
331 −2
350 −
284 
247 −
777 −1
533 
529 −3
479
�sps −
568 
050 −
621 −
254 
032 −
298 −
499 
069 −
616
�upu −
347 
124 −
520 −
091 
100 −
167 −
095 
128 −
421
�epe 
497 
086 −
396 −
099 
027 −
106 
592 
115 −
017
�mpm

−
055 
018 −
092 
013 
011 −
010 −
087 
024 −
124

NOTE: Median value of the elasticities evaluated for the 1984 data and estimated standard error (s.e.).

price, output, and time elasticities. We also use the computed
elasticities to study which model performs best in predicting
the observed evolution of labor demand.

7.1 Own Price Elasticities

Tables 4 and 5 present own-price elasticities derived from
models with and without concavity restriction, on the pooled
sample and on sample split (a). Because the variations over
time are not substantial, all elasticities are evaluated at 1984
values. To save space, we report the median value of each elas-
ticity over the industries and its standard error (s.e.), estimated
with the delta method. The concavity restriction is imposed
for the year 1984 and for the industry producing the median
level of output (no. 42), which defines the point 
p̄� z̄�.
For the pooled model, the concavity-unrestricted results are

not always plausible. With the BC and the TL, the own-price
elasticity of energy is significantly positive. With the NQ, the
unrestricted own-price elasticities have the expected sign but
are always lower in absolute value than with the BC and TL.
There is a great variability in elasticities with respect to the
functional form retained: ?hph ranges between −1�53 for the
TL and −�28 for the NQ, and ?epe ranges between −�10 for the
NQ and �59 for the TL. Note that inputs with a low cost share
(e.g., energy and high-skilled labor) have particularly variable
own-price elasticities across the specifications. For material
inputs, the own-price elasticity is rather stable.
Because concavity imposition is in fact valid only if the

cost function is price monotonic, we verify whether this con-
dition is fulfilled. For each functional form (BC, NQ, and TL)
and each of the sample splits [pooled and split (a)], there is a
total of 31×13 points at which the six input demands must be
evaluated. In summary, the (concavity-) unrestricted specifica-
tions do not often violate price monotonicity, because among
6× 6× 31× 13 = 14�508 possible cases, this occurs for only
1 case. Monotonicity was never violated at the point 
p̄� z̄� at
which concavity was imposed subsequently. After concavity
imposition, price monotonicity fails to hold for two observa-
tions. Again we find that price monotonicity is never violated
at the point 
p̄� z̄� at which concavity is imposed; thus it turns
out not to be necessary to impose price monotonicity in addi-
tion to concavity at 
p̄� z̄�. The cost function is also found
to be always increasing in output, whichever specification or
sample split is retained.
When concavity is locally imposed on the pooled estimates,

all own-price elasticities become negative. For the observation



10 Journal of Business & Economic Statistics, 2002

Table 5. Own-Price Elasticities, Sample Split (a)

Box–Cox Normalized quadratic Translog

Unrestricted Unrestricted Unrestricted
Restricted Restricted Restricted
median median medianMedian s.e. Median s.e. Median s.e.

�kpk −
062 
030 −
114 −
068 
050 −
068 −
021 
053 −
136
�hph −
831 
344 −
831 −
050 
059 −
073 −
967 
289 −
967
�sps −
464 
103 −
443 −
045 
023 −
061 −
406 
064 −
497
�upu −
331 
089 −
322 
118 
074 −
007 −
174 
104 −
254
�epe 
012 
043 −
269 −
064 
139 −
074 
020 
068 −
251
�mpm


016 
056 
016 
021 
004 
021 −
056 
070 −
060

NOTE: Median value of the elasticities over the three subsamples, evaluated for the 1984 data and estimated standard error (s.e.).

at which concavity is imposed, the concavity test statistic
d̂ is 212 for the BC, 23 for the NQ, and 279 for the TL.
It can be seen that the restricted and unrestricted results
are increasingly different with the importance of d̂. For the
NQ specification, there are only relatively small differences
between restricted and unrestricted estimates, whereas for the
TL model, the restricted ?hph becomes implausible. This may
explain why Diewert and Wales (1987) found relatively small
differences between the unrestricted and restricted estimates,
whereas Gagné and Ouellette (1998) showed that the impo-
sition of concavity can lead to important disparities between
unrestricted and restricted estimates. With the BC, the impo-
sition of concavity strongly affects the own-price elasticities
for capital, high-skilled labor, and energy. Coincidently, these
are the inputs with the smallest cost shares. With the TL, this
effect is even more pronounced.
The own-price elasticities obtained from the three subsam-

ples [split (a)] are reported in Table 5. For the BC, the value
of the unrestricted own-price elasticity for energy ?epe is now
more plausible than that obtained on the pooled sample. There
is some loss of precision in the BC estimates, however.
For the observation at which concavity is imposed, the con-

cavity test statistic d̂ is 76 for the BC, d̂ = 5 for the NQ
and d̂ = 261 for the TL. In this light, it is not surprising that
the disparity between the concavity-unrestricted and -restricted
estimates is most important for the TL specification. In con-
trast to the result obtained on the pooled sample, however,
there is no huge difference between the restricted and the unre-
stricted elasticities. In fact, when the split model is restricted
to fulfill concavity, only the estimates for one subsample are
affected [i.e., the subsample containing the point 
i0� t0�]; the
impact of concavity on the median elasticity is therefore lim-
ited. Note that the median of the concavity-restricted elastic-
ities ?mpm and ?epe is not always negative in Table 5; as con-
cavity is imposed at a given observation, the median elasticity
may violate concavity.
The ranking of the own-price elasticities of labor suggests

that the demand for skilled labor is more elastic than the
demand for low-skilled labor. This contradicts the findings of
most previous studies (see, e.g., the survey by Hamermesh
1993). Given the disparities that we have found, we must con-
clude that estimates of own-price elasticities are highly sensi-
tive to the choice of functional form and sample split.

7.2 Cross-Price Elasticities

To measure factor substitution possibilities, we com-
pute cross-price elasticities for the concavity-unrestricted
and -restricted models. The tables for this section and the
next, suppressed here, are available on request; see also the
discussion paper version (Koebel et al. 2000). Here we discuss
results only for the pooled sample and for sample split (a).
For the pooled sample BC unrestricted model, 18 out of 30

median cross-price elasticities are significant at the 5% level.
This number reduces to 15 for the NQ and to 16 for the TL.
The numbers of significant elasticities obtained from the split
sample are 13, for the BC, 14 for the NQ, and 13 for the TL.
The cross-price elasticities computed on the basis of the

NQ tend to be rather small in absolute value, pointing out a
rigid production structure precluding frictionless substitution
between inputs. In 22 out of 30 cases, the BC elasticities were
greater than the corresponding NQ elasticities. For the TL,
21 elasticites are greater in absolute value than for the NQ,
which seems to underestimates the extent of substitution and
complementarity relationships.
Although there are some differences between restricted and

unrestricted models, the number of contradictions is not very
important. (By contradiction, we mean that an elasticity that is
significantly different from 0 in one model changes its sign or
becomes insignificant in the other model.) It can be observed
that when concavity is not statistically rejected, the concavity-
adjusted elasticities do not differ much from the unrestricted
ones. The choice of the functional form and sample split has
then a greater impact on the estimates than the choice of
whether or not to impose concavity.
We also observe some stable results for the elasticities of

substitution. First, there is a dominant substitutability rela-
tionship between the three types of labor inputs; high-skilled
and skilled labor can easily be substituted, as can skilled and
unskilled labor. High-skilled labor cannot be substituted with
any other input and is complementary to unskilled labor. For
all specifications considered, capital and energy are substitutes;
a similar result is found in most previous studies for the United
States and Canada (see Thompson and Taylor 1995). Because
in our model, capital is assumed to be flexible, we adapt the
definition given by Bergström and Panas (1992) and speak of
capital–skill complementarity when ?hpk ≤ ?spk ≤ ?upk . When
?upk ≤ 0, these inequalities mean that the degree of comple-
mentarity between labor and capital increases with skill. When
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0 ≤ ?hpk it means that the degree of substitutability between
labor and capital decreases with skill. For some models, there
is evidence for capital–skill complementarity, but this result is
not robust with respect to the choice of functional form and
does not hold in our preferred specification. Our results differ
somewhat from those of Falk and Koebel (2002) and Fitzen-
berger (1999) in the case where capital is quasi-fixed.

7.3 Output and Time Elasticities

Again we discuss output and time elasticities obtained from
the pooled and split samples. These elasticities are in most
cases significant at the 5% level. The results do not vary much
across the specifications considered, and remain almost unaf-
fected by the imposition of concavity. The main regularities
are that (a) there are increasing returns to scale (?cy ≤ 1); (b)
costs are reduced over time (?ct ≤ 0); (c) no input is regres-
sive (or inferior), the elasticity of capital with respect to y is
the lowest, and the material-output elasticity is approximately
equal to 1; (d) time is high-skill labor using, less-skilled labor
saving (?ht ≥ 0≥ ?st ≥ ?ut), energy saving, and material using.
However, the interpretation of the time elasticities is delicate;
they may pick up the influence of technical progress, but also
the impact of any other omitted relevant variable that is cor-
related with time.
There are, however, some differences across the estimates.

With the NQ, one would typically conclude that the output
elasticity for different types of labor is increasingly positive
with rising skill level (?hy ≥ ?sy ≥ ?uy). This result does not
hold with the BC and the TL on the pooled sample. Sample
split (a) provides some weak evidence for this hypothesis; for
all functional forms retained ?hy ≥ ?sy and ?hy ≥ ?uy . For all
models considered, no contradiction can be found between the
concavity-unrestricted and -restricted estimates.

7.4 Decomposition of Factor Demand Growth

To better assess the performance of the different models,
we now consider how well they can explain the observed
shift away from unskilled labor and toward skilled labor that
occurred over the period. For this purpose, one possibility
would be to compare observed and predicted values of input
demands for each specification. It is clear from the forego-
ing statistical tests that the BC model on sample split (a)
is the specification providing the best overall fit. Because
we are rather interested in the plausibility of the elasticities
presented earlier, we follow an alternative approach in this
section and study how well the evolution of input demands
can be predicted using the alternative elasticities. For this pur-
pose, we decompose the predicted change in labor demand
into three components reflecting the impact of factor substi-
tution, growth, and time. These effects can be identified from
the total differentiation of the labor demand equations

@g∗it �
∑

j=k�h� s� u� e�m

�g∗

�pjit
@pjit+

�g∗

�yit
@yit+

�g∗

�t

⇔ @g∗it
g∗it

� ∑
j=k�h� s� u� e�m

�gpj
@pjit

pjit
+�gy

@yit
yit

+�gt� (21)

where @g∗it/g
∗
it denotes the predicted percentage change for the

three types of labor (g∗it = h∗
it� s

∗
it� u

∗
it). The observed values of

the growth rates @git/git , @pjit/pjit , and @yit/yit can be easily
calculated for each industry and time period. The different
elasticities involved in (21) are computed for each industry
and time period from the estimates. Then the predicted and
observed values (@g∗it/g

∗
it and @git/git) for each industry and

time period are compared.
The first term on the right side of (21) measures the effect

of own-price variation and input substitution; the second term
reflects the impact of changes in the level of output; and the
last term denotes the impact of time. Note that the foregoing
decomposition is based on a first-order approximation and is
precise only for small changes @pjit and @yit . Although a
second-order approximation would be more precise, separate
identification of the impact of price, output, and time would
then no longer be possible, because the second-order terms
involve interacting variables.
Columns 3 and 5 of Table 6 give the observed and pre-

dicted changes for the three types of labor. In general, the
predicted changes are relatively close to the observed ones.
For instance, the (median) increase in the level of high-skilled
labor is 3�2% which is close to the prediction of 3�4% with
the BC. From the comparisons of predicted and observed val-
ues across functional forms, we can conclude that the BC and
the TL seem to be equally reliable models. The NQ appears
to be the worst functional form; it is never more precise than
the BC or the TL.
Comparisons between concavity-restricted and -unrestricted

specifications and between pooled and disaggregate models
using the foregoing criteria are inconclusive. Similarly, no firm
conclusion emerges from the comparison between estimates
on sample split (a) and on the pooled sample.
The last three columns of Table 6 show the decomposi-

tion (21). In general, the impact of output and time is more
important than price effects in explaining the shift toward
skilled labor and away from unskilled labor. The impact of
the evolution of prices is (almost) always negative, but is also
very small in absolute value (especially for the NQ). High-
skilled labor is the labor input most affected by the evolu-
tion of prices, due to the relatively high own-price elastici-
ties. This suggests that wage pressure is an almost negligible
factor in explaining the shift away from unskilled labor. For
instance, only 0%–10% of the shift against unskilled labor can
be explained by price effects. For h, the negative price effect
is netted out by a positive impact of output growth, so that
in the last instance the impact of time determines the overall
evolution of high-skilled demand over the period. For skilled
labor, output has the largest impact, and this widely offsets the
negative effect of time. For unskilled labor, output is impor-
tant too (at least for the BC and the TL), but it is largely
outweighed by the impact of time.

8. CONCLUSION

In this article we have proposed a method for imposing
curvature conditions on a wide class of functional forms and
for testing these restrictions. In the empirical application, we
estimated the parameters of a concavity-constrained BC cost



12 Journal of Business & Economic Statistics, 2002

Table 6. Determinants of Labor Demand by Skill Class

% Change attributable to

Price Output Time
Functional Input Actual Modeling Predicted

form demand change assumptions change

Box–Cox h 3
19 (a) unrestricted 3
37 −
64 1
31 2
70
(a) restricted 3
32 −
68 1
18 2
82
(p) unrestricted 3
80 −1
01 2
25 2
55
(p) restricted 3
56 −1
04 2
13 2
48

s 
30 (a) unrestricted 
47 −
24 1
21 −
50
(a) restricted 
42 −
16 1
08 −
50
(p) unrestricted 
35 −
25 1
23 −
62
(p) restricted 
51 −
08 1
23 −
65

u −3
19 (a) unrestricted −3
52 −
26 1
22 −4
48
(a) restricted −3
68 −
25 1
18 −4
61
(p) unrestricted −3
20 
02 1
56 −4
79
(p) restricted −3
21 −
01 1
55 −4
76

Normalized h 3
19 (a) unrestricted 3
59 −
24 2
07 1
77
quadratic (a) restricted 3
60 −
23 2
07 1
77

(p) unrestricted 3
85 −
16 2
86 1
15
(p) restricted 4
23 −
30 3
01 1
53

s 
30 (a) unrestricted 
56 −
01 1
06 −
49
(a) restricted 
60 −
01 1
06 −
45
(p) unrestricted 
70 
04 1
03 −
38
(p) restricted 
82 −
01 1
06 −
23

u −3
19 (a) unrestricted −2
11 
08 
51 −2
70
(a) restricted −2
14 
05 
51 −2
70
(p) unrestricted −1
97 
03 
63 −2
62
(p) restricted −1
92 −
01 
64 −2
55

Translog h 3
19 (a) unrestricted 2
81 −1
44 1
16 3
08
(a) restricted 2
94 −1
26 1
16 3
03
(p) unrestricted 3
13 −1
34 1
36 3
10
(p) restricted 2
99 −1
46 1
14 3
31

s 
30 (a) unrestricted 
65 −
37 1
40 −
39
(a) restricted 
74 −
29 1
40 −
37
(p) unrestricted 
32 −
37 1
20 −
51
(p) restricted 
51 −
24 1
21 −
46

u −3
19 (a) unrestricted −3
10 −
25 1
52 −4
37
(a) restricted −3
10 −
26 1
52 −4
36
(p) unrestricted −3
51 −
08 1
68 −5
11
(p) restricted −3
42 −
03 1
68 −5
07

NOTE: Column 3 shows the median growth rate over all industries and years. Columns 6–8 show the median value of the estimated
impacts of price, output, and time over all industries and years. The entries of column 5 are the sum of the corresponding entries
of columns 6 to 8. The letter (a) denotes sample split (a), (p) denotes the pooled sample, “unrestricted” represents the concavity
unrestricted specification and “restricted” represents for the concavity restricted specification.

function. For our dataset, a parametric test for the null of
concavity leads to a weak rejection of this assumption.
Because concavity rejection may be related to a bad spec-

ification of functional form and to the heterogeneity of the
observations, we also compare the performance of alternative
model specifications and find that indeed the choice of func-
tional form and sample split are important issues for obtaining
plausible results. In particular, the NQ functional form seems
to underestimate the scope of substitution and complementary
patterns. No relationship could be found between the specifi-
cation of the model and the frequency of concavity rejection;
this may be related to the fact that the true aggregate relation-
ships do not necessarily inherit all microeconomic properties
(Koebel 2002).
Concerning the determinants of labor demand, the impact

of output and time is in general more important than that of
price and substitution. We find that substitutability dominates
between high-skilled and skilled labor and between skilled
and unskilled labor. Some complementarity is found between
high-skilled and unskilled labor. The impact of prices and
wages cannot, however, explain much of the observed changes
in the different types of labor inputs. Whereas the evolu-

tion of skilled labor demand is explained mainly by output
growth, the dominant factor “explaining” the shift against
unskilled labor and toward high-skilled labor is the resid-
ual time trend. This emphasizes the necessity to extend the
usual theoretical framework in production analysis to pro-
mote a better understanding of technologic change and its
determinants.
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APPENDIX A: PROOFS OF THE PROPOSITIONS

Proof of Proposition 1

For the sake of completeness, we adapt the results of
Gouriéroux et al. (1982), Gouriéroux and Monfort (1989), and
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Wolak (1989) to prove the assertions of Proposition 1. For this
aim, we also adopt their assumptions, which are not stated
here for brevity.
Parts a and b. It is clear that �̂ and �̃0 converges to the

true parameter �0 under H0. It remains to show that �̂0 also
converges to �0. For this purpose, we characterize in stages
1–3 the necessary conditions for an optimum in (9), (10), and
(12), and show in stage 4 that the conditions corresponding to
(9) are equivalent to those corresponding to (10) and (12).
Stage 1. Problem (9) can be reparameterized using the

Cholesky decomposition to transform the inequality con-
straints v′ �Hv ≤ 0, ∀v, into the equality constraints g
�� =
 0H
u�. The corresponding Lagrangean is

�= 
�̂−��′�̂−1
� 
�̂−��+A′( 0H
u�−g
��

)
�

where A
S H ×1� denotes the vector of Lagrange multipliers.
The solution 
�̃0� Ã0� ũ0� satisfies the first-order conditions

��

��
= 0⇔−2�̂−1

� 
�̂− �̃0�− �g′

��

�̃0�Ã0 = 0� (A.1)

��

�u
= 0⇔ � 0′H

�u

ũ0�Ã0 = 0� (A.2)

and

��

�A
= 0⇔  0H
ũ

0�= g
�̃0�� (A.3)

From ��/��= 0, we obtain

Ã0 =−2
(
�g

��′ 
�̃
0��̂�

�g′

��

�̃0�

)−1
�g

��′ 
�̃
0�
�̂− �̃0� (A.4)

and


�̂− �̃0�′�̂−1
� 
�̂− �̃0�= Ã0′

2
�g

��′ 
�̃
0��̂�

�g′

��

�̃0�

Ã0

2
� (A.5)

Stage 2. The Lagrangean corresponding to (12) is given
by

�= 
�̂−��′�̂−1
� 
�̂−��+A′( ̂0H −g
��

)
�

and the solution 
�̂0� Â0� satisfies

��

��
= 0⇔−2�̂−1

� 
�̂− �̂0�− �g′

��

�̂0�Â0 = 0 (A.6)

and

��

�A
= 0⇔  ̂0H −g
�̂0�= 0� (A.7)

Similarly to the former problem, we obtain

Â0 =−2
(
�g

��′ 
�̂
0��̂�

�g′

��

�̂0�

)−1
�g

��′ 
�̂
0�
�̂− �̂0� (A.8)

and


�̂− �̂0�′�̂−1
� 
�̂− �̂0�= Â0′

2
�g

��′ 
�̂
0��̂�

�g′

��

�̂0�

Â0

2
� (A.9)

Stage 3. The first-order conditions for a solution to (10)
lead to

� 0′H
�u


û0��̂−1
H

(
 ̂H − 0H
û

0�
)= 0� (A.10)

Inserting (A.7) into (A.10) and after first-order Taylor devel-
opment around �̂, this last condition becomes

� 0′H
�u


û0��̂−1
H

�g

��′ 
�̂�
�̂− �̂0�
a= 0�

which is asymptotically equivalent to [using (A.8) and (11)]

� 0′H
�u


û0�Â0
a= 0� (A.11)

Stage 4. In summary we have shown that the system
(A.6)–(A.7), where  ̂0H ≡  0H
û

0� is determined in (A.10), can
be asymptotically equivalently written as

−2�̂−1
� 
�̂− �̂0�− �g′

��

�̂0�Â0 = 0�

 0H
û
0�−g
�̂0�= 0�

and
� 0′H
�u


û0�Â0
a= 0�

This system comprises the same equations and unknown as the
system (A.1)–(A.3), and because their solutions are unique,
they must be asymptotically identical.
Part c. As �̂, �̃0, and �̂0 converge to the true parame-

ter �0 under H0 (part a), we directly see from (A.4)–(A.5)
and (A.8)–(A.9) of part a, that the minima of (9) and
(12) are asymptotically equivalent. We now show that 
�̂−
�̂0�′�̂−1

� 
�̂− �̂0� is asymptotically equivalent to 
 ̂H −  ̂0H�
′

�̂−1
H 
 ̂H −  ̂0H� under H0, with  ̂

0
H ≡  0H
û

0� = g
�̂0�. Using
a first-order Taylor development of g
�̂0� around �̂, we can
write, under H0,

[
g
�̂�−g
�̂0�

]′[ �g
��′ 
�̂��̂�

�g′

��

�̂�

]−1[
g
�̂�−g
�̂0�

]
a= 
�̂− �̂0�′

�g′

��

�̂0�

[
�g

��′ 
�̂��̂�

�g′

��

�̂�

]−1

× �g

��′ 
�̂
0�
�̂− �̂0�

= Â0′

2
�g

��′ 
�̂
0��̂�

�g′

��

�̂0�

[
�g

��′ 
�̂��̂�

�g′

��

�̂�

]−1

× �g

��′ 
�̂
0��̂�

�g′

��

�̂0�

Â0

2

a= Â0′

2
�g

��′ 
�̂
0��̂�

�g′

��

�̂0�

Â0

2

= 
�̂− �̂0�′�̂−1
� 
�̂− �̂0��

where the second equality follows from (A.6) and the last
equality follows from (A.9).
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Part d. Using a first-order Taylor expansion of (A.6)–
(A.7) around �̂, we can rewrite these conditions as

�̂0− �̂
a= �̂�

�g

��

�̂�′

Â0

2

and

 ̂0H −g
�̂�− �g

��′ 
�̂�
�̂
0− �̂�

a= 0�

Solving this system in 
�̂0� Â0� yields

Â0
a= 2

[
�g

��′ 
�̂��̂�

�g′

��

�̂�

]−1

 ̂0H −g
�̂���

and, finally,

�̂0
a= �̂+ �̂�

�g′

��

�̂�

[
�g

��′ 
�̂��̂�

�g′

��

�̂�

]−1(
 ̂0H −g
�̂�

)
�

Proof of Proposition 2

To ensure that the minimization in (14) occurs on the
domain where * ≤ 0, we can simply reparameterize * for
imposing the nonpositivity of its components; for instance,
define *0 as the vector with −62i as components. Then we can
write

dKP =min
*

{

*̂−*�′+̂−
*̂−*� � *≤ 0

}
=min

6

{(
*̂−*0
6�

)′
+̂−(*̂−*0
6�

)}
=min

6
vec′

(
B̂−B0

)
P ′+̂−Pvec

(
B̂−B0

)
� (A.12)

where B is the diagonal matrix of eigenvalues and P is defined
as the selection matrix of size Sp×S2p such that Pvec
B�= *.
Let Q be the matrix of orthonormal eigenvectors of �H ; then

Q′ �HQ =B�

From this equation, it follows that (see, e.g., Magnus 1985;
Kodde and Palm 1987)

�*

�vec′ �H = P
Q′ ⊗Q′��

Let �̂H be the (singular) variance matrix of vec �̂H the vari-
ance matrix considered by Kodde and Palm can then be writ-
ten as

+̂− =
[

�*

�vec′
�H�
( �̂H)

�̂H

�*′

�vec
�H�
( �̂H)]−

=
[
P
Q̂′ ⊗ Q̂′��̂H
Q̂

′ ⊗ Q̂′�′P ′
]−

= P
Q̂′ ⊗ Q̂′��̂−
H
Q̂

′ ⊗ Q̂′�′P ′� (A.13)

using the orthogonality of 
Q̂′ ⊗ Q̂′� and 
Q̂′ ⊗ Q̂′�′ and the
fact that PP ′ is an identity matrix. It is then easy to check
that, denoting +̂= P
Q̂′ ⊗Q̂′��̂H
Q̂

′ ⊗Q̂′�′P ′, one indeed has
+̂+̂−+̂= +̂. Note that �̂H , the variance matrix of  ̂H ≡ vecli �̂H ,

is a submatrix of �̂H . Let �H 0 = Q̂B0Q̂′; using (A.12) and
(A.13), we can rewrite

dKP =min
6
vec′
Q̂′ �̂HQ̂−B0�P ′+̂−Pvec
Q̂′ �̂HQ̂−B0�

=min
6
vec′

(
Q̂′
 �̂H − �H 0�Q̂

)
P ′+̂−Pvec
Q̂′
 �̂H − �H 0�Q̂�

=min
6
vec′

( �̂H − �H 0
)

Q̂⊗ Q̂�P ′+̂−P
Q̂′ ⊗ Q̂′�vec

( �̂H − �H 0
)

=min
6
vec′

( �̂H − �H 0
)
�̂−

Hvec
 �̂H − �H 0�

=min
6
vecli′

( �̂H − �H 0
)
�̂−1

H vecli
( �̂H − �H 0

)
�

where the third equality follows from the properties of the vec
operator and Kronecker product, and the last from Dhrymes’s
(1994) lemma A1. Because �H 0 = Q̂B0Q̂′ is negative semidef-
inite, it can be written as −U ′U . However, Q̂B0Q̂′ comprises
only the Sp−1 free parameters of 6, whereas −U ′U is com-
posed of the Sp
Sp−1�/2 free parameters u. Hence, in small
samples,

dKP =min
6
vecli′

( �̂H − �H 0
)
�̂−1

H vecli
( �̂H − �H 0

)
≥min

u
vecli′

( �̂H +U ′U
)
�̂−1

H vecli
( �̂H +U ′U

)
=min

u

[
 ̂H − 0H
u�

]′
�̂−1

H

[
 ̂H − 0H
u�

]= d�

with  ̂H ≡ vecli �̂H and  0H
u�≡ vecli
−U ′U�. The reason for
the inequality is that the minimization over u, which comprises
more parameters than 6, yields a lower value of the optimized
criterion. By minimizing over 6, one does not change the
eigenvectors Q̂, whereas minimization over u affects simulta-
neously eigenvalues and eigenvectors. Asymptotically, dKP

a=
d, because under H0, a first-order Taylor development of *̂

0

around *̂ allows us to write


*̂− *̂0�′+̂−
*̂− *̂0�

a= vec′
( �̂H − �H 0

) �*′

�vec
�H�
( �̂H)

+̂− �*

�vec′
�H�
( �̂H)

vec
( �̂H − �H 0

)
= 
 ̂H −  ̂0H�

′�̂−1
H 
 ̂H −  ̂0H��

Proof of Proposition 3

a. An eigenvalue *1 of �H is a solution of f 
*� �H�≡ �*ISp −�H � = 0. This eigenvalue *1 can be expressed as a function
of the parameters of �H when the conditions of the implicit
function theorem are fulfilled, that is, when �f 
*� �H�/�* �= 0
at *= *1. Because

�*ISp − �H � = �*ISp −B� =
Sp∏
i=1

*−*i��

it follows that

�f 
*� �H�
�*

=
Sp∑
j=1

Sp∏
i �=j

*−*i��
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Hence
�f 
*� �H�

�*

∣∣∣∣
*=*1

=
Sp∏
i �=1

*1−*i��

Thus, �f 
*� �H�/�* is different from 0 if and only if *1 is
simple. A related result has been obtained by Magnus (1985,
thm. 1).
b. We adapt a proof given by Lau (1978, lems. 3.6 and

3.7) to our slightly different problem. Let �Sp−1 be the set
of all real symmetric matrices with rank Sp−1 and let � 0

Sp−1
be the subset of �Sp−1 of all matrices with multiple eigen-
values. For given eigenvalues *2� ' ' ' � *Sp , the set of *1 such

that
∏Sp

i �=1
*1 − *i� = 0 is a set of measure 0. Because the
union (over j = 1� ' ' ' � Sp) of a countable number of null sets
is again a null set, the subset � 0

Sp−1 of matrices satisfying∏Sp
i �=j
*j −*i�= 0, j = 1� ' ' ' � Sp, is of measure 0.

APPENDIX B: SOME FUNCTIONAL FORMS NESTED
WITHIN THE BOX–COX SPECIFICATION

Here we show how the NQ, a version of the GL, and the
TL are obtained as special cases of the generalized BC speci-
fication. The derivation of further interesting functional forms
can also be obtained along these lines.

� For 11 = 12 = 1, the NQ cost function is obtained as a
special case of the BC specification. Indeed, we then have

Zit = zit− 7Sz

and
Pit =

pit
p′
it3i

− 7Sp �

where 7Sp is a Sp-vector of 1s. The cost function (15) then
becomes

c∗ = p′
it x̄iC

∗
NQ
pit�zit5i�+
p′

it x̄i�

= p′
it x̄i

(
1+50i+P ′

itBpi+Z′
itBz+

1
2
P ′
itBppPit+P ′

itBpzZit

+ 1
2
Z′
itBzzZit

)
= p′

it c̄iBpi+
p′
it x̄i�z

′
itBz+

1
2
c̄i
p′
itBpppit

p′
it3i

+ c̄ip′
itBpzzit

+
p′
it x̄i�

1
2
z′itBzzzit+p′

it x̄i

(
1+50i−7′SpBpi−7′SzBz

+ 1
2
7′SpBpp7Sp+7′SpBpz7Sz+

1
2
7′SzBzz7Sz

)
+p′

it x̄i

(
−7′SpBpp

pit
p′
it3i

−7′SpBpzzit−
p′
it

p′
it3i

Bpz7Sz−7′SzBzzzit
)
�

Considering the restrictions (17), we obtain

c∗ = p′
it c̄iBpi+ 
p′

it x̄i�z
′
itBz+

1
2
c̄i
p′
itBpppit

p′
it3i

+ c̄ip
′
itBpzzit

+ 1
2

p′

it x̄i�z
′
itBzzzit+p′

it x̄i

(
50i− 7′SzBz+

1
2
7′SzBzz7Sz

)
+p′

it x̄i

(
− p′

it

p′
it3i

Bpz7Sz − 7′SzBzzzit

)

= p′
itBpi+ 
p′

it x̄i�z
′
itBz+

1
2

p′
itBppipit

p′
it3i

+p′
itBpzizit

+ 
p′
it x̄i�

1
2
z′itBzzzit�

which is the expression of the normalized quadratic cost func-
tion, with

Bpi = c̄i
(
Bpi−Bpz7Sz

)+ x̄i

(
50i− 7′SzBz+

1
2
7′SzBzz7Sz

)
�

Bz = Bz−Bzz7Sz �

Bppi = Bppc̄i�

and
Bpzi = Bpzc̄i�

� In the case where 11 = 1/2 and 12 = 1, we have

Zit = 2
(
z
1/2
it − 7Sz

)
and

Pit = 2
[(

pit
p′
it3i

)1/2

− 7Sp

]
�

where, by convention, z1/2it = 
z
1/2
1 � ' ' ' � z

1/2
Sz
�′it and p

1/2
it =


p
1/2
1 � ' ' ' � p

1/2
Sp
�′it . The cost function (15) then becomes

c∗ = p′
it x̄iC

∗
GL
pit� zit5i�+p′

it x̄i

= p′
it x̄i

(
1+50i+P ′

itBpi+Z′
itBz+

1
2
P ′
itBppPit+P ′

itBpzZit

+ 1
2
Z′
itBzzZit

)
= 2c̄i
p

′
it3i�

1/2p
1/2′
it Bpi+2
p′

it x̄i�z
1/2′
it Bzi+2c̄ip1/2′it Bppp

1/2
it

+4c̄i
p′
it3i�

1/2p
1/2′
it Bpzz

1/2
it +2
p′

it x̄i�z
1/2′
it Bzzz

1/2
it

+2p′
it x̄i

(
1/2+50i− 7′SpBpi− 7′SzBz+ 7′SpBpp7Sp

+27′SpBpz7Sz + 7′SzBzz7Sz
)

+4p′
it x̄i

[
−7′SpBpp

(
pit
p′
it3i

)1/2

− 7′SpBpzz
1/2
it

−
(
p′
it

p′
it3i

)1/2

Bpz7Sz − 7′SzBzzz
1/2
it

]
= 2c̄i
p

′
it3i�

1/2p
1/2′
it Bpi+2
p′

it x̄i�z
1/2′
it Bz+2c̄ip1/2′it Bppp

1/2
it

+4c̄i
p′
it3i�

1/2p
1/2′
it Bpzz

1/2
it +2
p′

it x̄i�z
1/2′
it Bzzz

1/2
it

+2p′
it x̄i
50i−1/2− 7′SzBz+ 7′SzBzz7Sz�

+4p′
it x̄i

[
−
(
p′
it

p′
it3i

)1/2

Bpz7Sz − 7′SzBzzz
1/2
it

]
�

After reparameterization we obtain

c∗ = 
p′
it3i�

1/2p
1/2′
it Bpi+ 
p′

it x̄i�z
1/2′
it Bz+p

1/2′
it Bppip

1/2
it

+ 
p′
it3i�

1/2p
1/2′
it Bpziz

1/2
it + 
p′

it x̄i�z
1/2′
it Bzzz

1/2
it �
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which is a version of the GL cost function, with

Bpi = c̄i
2Bpi−4Bpz7Sz��
Bz = 2Bz−4Bzz7Sz �

Bppi = 2Bppc̄i+diag
[
2x̄i
50i−1/2− 7′SzBz+ 7′SzBzz7Sz�

]
�

Bpzi = 4Bpzc̄i�

and
Bzz = 2Bzz�

where diag
v� is a diagonal matrix with the vector v on the
main diagonal.

� When 11 → 0 and 12 → 0, the TL is obtained as a lim-
iting case. Indeed,

Zit = lim
11→0

z
11
it −1
11

= ln zit�

C∗
TL = lim

12→0


c∗/p′
it x̄i�

12 −1
12

= ln c∗ − ln
p′
it x̄i��

Pit = lim
11→0


pit/p
′
it3i�

11 − 7Sp
11

= lnpit− 7Sp ln
p
′
it3i��

Table C.1. Denomination of the Industries

No. Industry No. Industry

14 Chemical products 30 Aircraft and spacecraft
15 Refined petroleum products 31 Electrical machinery, equipment and appliances
16 Plastic products 32 Precision instruments and optical equipment
17 Rubber products 33 Tools and finished metal products
18 Quarrying, building materials, etc. 34 Musical instruments, games and toys, jewelry, etc.
19 Ceramic products 35 Wood working
20 Glass products 36 Wood products
21 Iron and steel 37 Pulp, paper, and paperboard
22 Non-ferrous metals, etc. 38 Paper processing
23 Foundry products 39 Printing and reproduction
24 Drawing plants products, cold rolling mills, etc. 40 Leather and leather products, footwear
25 Structural metal products, rolling stock 41 Textiles
26 Machinery and equipment 42 Wearing apparel
27 Office machinery and computers 43 Food products (excluding beverages)
28 Road vehicles 44 Beverages
29 Ships and boats 45 Tobacco products

Table C.2. Description of the Different Subsamples Considered

Split (a) Consumer goods Investment goods Intermediate goods
Industry no. 16, 19, 20, 34, 36, 38, 39, 25, 26, 27, 28, 29, 14, 17, 18, 21, 22,

40, 41, 42, 43, 44, 45 30, 31, 32, 33 23, 24, 35, 37

Split (b) Small industries Medium industries Large industries
Industry no. 17, 19, 20, 23, 29, 30, 22, 24, 25, 27, 32, 14, 16, 18, 21, 26,

34, 35, 37, 38, 40 36, 39, 42, 44, 45 28, 31, 33, 41, 43

Split (c) Low skill intensive Skill intensive High skill intensive
Industry no. 22, 24, 34, 35, 36, 38, 16, 18, 20, 21, 23, 14, 17, 19, 25, 26,

40, 41, 42, 43, 44 28, 33, 37, 39, 45 27, 29, 30, 31, 32

Split (d) Not labor intensive Labor intensive Highly labor intensive
Industry no. 14, 18, 21, 22, 35, 37, 16, 17, 20, 24, 27, 19, 23, 25, 26, 30,

38, 40, 43, 44, 45 28, 29, 34, 41, 42 31, 32, 33, 36, 39

Split (e) Not capital intensive Capital intensive Highly capital intensive
Industry no. 16, 22, 25, 26, 30, 31, 14, 17, 24, 28, 29, 18, 19, 20, 21, 23,

32, 33, 36, 40, 42, 43 33, 34, 38, 41, 45 27, 35, 37, 39, 44

where, by convention, ln zit = 
ln z1� ' ' ' � ln zSz�
′
it and lnpit =


lnp1� ' ' ' � lnpSp�
′
it . The cost function then becomes

ln c∗ =C∗
TL
pit� zit5i�+ ln
p′

it x̄i�

=
(
50i+P ′

itBpi+Z′
itBzi+

1
2
P ′
itBppPit+P ′

itBpzZit

+ 1
2
Z′
itBzzZit

)
+ ln
p′

it x̄i�

= 50i+ 
lnpit�
′Bpi+ 
ln zit�

′Bzi+
1
2

lnpit�

′Bpp
lnpit�

+ 
lnpit�
′Bpz ln zit+

1
2

ln zit�

′Bzz ln zit+ ln
p′
it x̄i�

+ ln
p′
it3i�

(
−7′SpBpi+ 1

2 ln
p
′
it3i�7

′
Sp
Bpp7Sp

− 7′SpBpp
lnpit�− 7′SpBpz ln zit

)
� (B.1)

Once restrictions (17) are imposed, the last line of (B.1) boils
down to ln
c̄i� and the usual TL specification is obtained by
subsuming ln
c̄i� into 50i.

APPENDIX C: DESCRIPTION OF THE INDUSTRIES
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